UNT professor helps solve mystery of high-speed energy storage

Monday, February 27, 2012

DENTON (UNT), Texas -- University of North Texas professor Dr. Marco Buongiorno-Nardelli and his colleagues at North Carolina State University have solved the mystery of how a specially designed polymer is able to store and release large amounts of energy; a discovery that could result in more powerful and more efficient electric cars.

One of the barriers to widespread adoption of electric vehicles is energy storage. Current technologies struggle to give electric vehicles get-up-and-go necessary to accelerate quickly from a standstill. Researchers are looking to capacitors using engineering polymers to solve this problem.  

Capacitors are like batteries in that they store and release energy. However, capacitors use separated electrical charges, rather than chemical reactions, to store energy. The charged particles enable energy to be stored and released very quickly. Imagine an electric vehicle that can accelerate from zero to 60 at the same rate as a gasoline-powered sports car. There are no batteries that can power that type of acceleration because they release their energy too slowly. Capacitors, however, could be up to the job – if they contained the right materials.                                                       

Researchers previously found that capacitors containing the polymer polyvinylidene fluoride, or PVDF, in combination with another polymer called CTFE, were able to store up to seven times more energy than those currently in use. However, researchers did not understand the mechanism that made this increased storage possible. Buongiorno-Nardelli and Dr. Jerzy Bernholc, a researcher at North Carolina State University, designed a study to analyze the movement of the atoms in PVDF and identify this mechanism.

Dr. Vivek Ranjan, a post-doctoral researcher at North Carolina State, conducted the computer simulations that revealed the atoms in the PVDF mixture were transitioning from a non-polar to a polar state in a simultaneously and synchronized movement. This transition required little electrical charge, allowing it to store and release greater amounts of energy. 

The findings from this study, which was funded by the Office of Navel Research, were published in Physical Review Letters today. Buongiorno-Nardelli says the team will now turn their focus to identifying a polymer even more efficient at storing and releasing energy than PVDF. 

Buongiorno-Nardelli joined the UNT faculty in January 2012. Prior to arriving at UNT, he was a professor at North Carolina State University. He currently has a joint appointment to UNT's Department of Physics and Department of Chemistry. He also is a member of UNT's Materials Modeling Research Cluster.

UNT News Service Phone Number: (940) 565-2108

Category:

Latest News

Thursday, August 28, 2014

The University of North Texas Mayborn Graduate Institute of Journalism has awarded $140,000 in scholarships to students for the 2014-2015 year.

Thursday, August 28, 2014

Gary Webb and Nicole Dash have received a grant from the National Science Foundation to study disaster preparedness among Native American communities -- a historically underrepresented population in the field of emergency preparedness research in the United States.

Union construction
Thursday, August 28, 2014

UNT will celebrate the placement of the highest steel beam at a topping off ceremony on the UNT Library Mall.

Thursday, August 28, 2014

The UNT galleries of the College of Visual Arts and Design will host a variety of exhibitions this fall, presenting the best in art and photography from UNT and around the world.

New solar compacting bins
Thursday, August 28, 2014

As you prepare for the first Fall 2014 Mean Green home game Sept. 6 against SMU, plan to tailgate Mean Green style.