Flower power

Flower power
Symptoms of tissue collapse are delayed when cut flowers are placed in a UNT-developed solution (middle), compared with plain water (left) or a commercial solution (right).
Dr. Kent Chapman
Associate Professor of Biological Sciences
Wednesday, April 21, 2004

The many bouquets of spring flowers that Texans will buy in the next few weeks for Mother's Day, weddings and other special days will wither and fade a few days after the flowers were cut and placed in water.

And ripe peaches, plums and other warm weather fruits will become rotten if not eaten quickly.

Thanks to the research of University of North Texas biologists, however, ripe fruit and cut flowers may soon stay fresh for many days.

Dr. Kent Chapman, UNT associate professor of biological sciences, and Swati Tripathy, postdoctoral research associate, are the first researchers to show that some lipid compounds act as signaling molecules in plants that encounter pathogens or other elements that cause stress to their cells and lead to cell death. These lipids appear to block enzymes that contribute to cellular collapse and tissue death.

Chapman compares these signaling lipids, which are derived from N-acylphosphatidylethanolamine (NAPE), a cellular membrane component in all multicellular organisms, to the signaling lipids in human cells.

"Unlike humans, plants don't have circulating antibodies, and they can't go inside to avoid stress from hot and cold weather. They can't put on sunscreen to avoid stress from UV rays," he says. "They really have to be much more sophisticated in responding to their environments than we do."

A stress defense for plants

Chapman has studied plant lipid biochemistry since he became a UNT faculty member in 1993. He was attracted to the unusual chemical structure of NAPE — three fatty acids instead of the usual two found in typical membrane lipids.

In addition, Chapman's UNT research team had found the lipid at higher concentrations in seeds than in any other parts of a plant.

"Seeds are only 10 percent water, and there isn't any cellular stress that is worse than dehydration," he says. "It's not proven, but we may see an accumulation of these lipids in seeds as a result of dehydration stress."

In 1995, Chapman and Tripathy began to experiment with NAPE as a defense signal in tobacco plants. They introduced pure proteins from pathogens into the plants' leaves, believing the proteins would activate the same defense response that bacteria or other pathogens would trigger.

"We chose to use protein because if you use bacteria, you have to deal with the bacteria's own lipids," Chapman says. "The proteins did activate the metabolism of NAPE."

In additional experiments, release of the lipid activated the plants' own defense systems.

Prolonging the life of cut flowers

Chapman and researcher Shea Austin-Brown next searched for other biological functions for this obscure class of lipids. They found that these lipids inhibit a type of membrane-degrading enzymes.

These enzymes are normally activated in plants during tissue collapse, which occurs in flowers when they are cut from their stems. Chapman wondered whether lipid supplements could delay the degradation and tissue death in cut flowers and other plant systems. He and Austin-Brown soaked the cut flower stems in a solution of synthetic lipids and compared them to flowers soaked in water or solutions commonly used by florists.

Degrading cells in cut flowers lead to droopy blossoms and stems after a few days. However, these plant lipids seem to inhibit the enzymes that participate in that process, resulting in full and fresh blossoms and rigid stems for a longer period of time, Chapman says.

"We measured the diameters of the blossoms before soaking in the solution, then measured them again days later to note cell degradation," he says. "The blossom measurements varied depending on the quality of the flower and whether the correct dosage was soaked up. But generally, the flowers in our solution were far superior to others. This process is almost like putting a protectant into the flower."

Chapman experimented with carnations, roses, daisies and wildflowers, all with the same results.

"We also tested the concentration range. Higher concentrations of our solution extend the life of flowers for a longer time while they are in a vase," he says.

UNT has applied for a patent for the method of using these solutions to preserve cut flowers. Chapman says the method could revolutionize the cut flower industry — a $7 billion industry in the United States alone.

"If only a small percentage of those handling flowers treated them in the solution, it would lead to a significant savings in terms of shipping, inventory costs and customer satisfaction," he says. "When you buy cut flowers, you want them to last for a while. But right now, some flowers last only 24 to 48 hours before wilting." Flowers in Chapman's experiments were still fresh after 17 days.

He adds the UNT-developed solution could replace a silver compound solution that florists have used to preserve flowers. That solution, he says, is heavily regulated by the Environmental Protection Agency because of concerns about heavy metal pollution in wastewater.

Other applications

In addition to cut flowers, the freshness of fruits and vegetables might be preserved with variations of the lipid formulas, Chapman says.

"Tomatoes, for example, taste the best when they ripen on the vine," he says. "But if you let them ripen on the vine and then cut them for shipping to grocery stores, the cellular degradation process begins and the tomatoes start getting too ripe and soft. Dosing them could be a good way to temporarily delay further ripening after they're cut."

Chapman and his research team plan to continue to investigate whether lipid signaling is involved in different types of environmental stress.

"NAPE metabolism may be the central mechanism activated in response totemperature stress," he says. "If we can manipulate the levels of NAPE metabolites in response to different environmental stress, we could successfully grow plants in climates that are warmer or cooler than normal."

Part of Chapman's research on NAPE was published in a special issue of the journal Chemistry and Physics of Lipids. He notes that scientists had long believed that NAPE had no real function in any organism.

"We found out not only is that false, but the lipid participates in a vast array of biological functions," he says. "Science is meant to be skeptical, but there's really nothing in an organism that is there byaccident."

UNT News Service Phone Number: (940) 565-2108

Category:

Latest News

Friday, April 18, 2014

Students of the late painting professor Rob Erdle, regents professor emeritus at UNT, plan to celebrate his life by displaying his work alongside their own.

Thursday, April 17, 2014

UNT's Contemporary Arab and Muslim Cultural Studies Institute welcomes Sheila Blair, Boston College professor of Islamic and Asian art, for the free lecture "By the Pen: The Art of Writing in Islamic Art."

Thursday, April 17, 2014

UNT will offer a variety of workshops for students, professionals and families this summer.

Robert D. Kaplan
Thursday, April 17, 2014

Kaplan will be the final speaker for this year's University of North Texas Kuehne Speaker Series on National Security. His lecture begins at noon in the Gold Room on the second floor of The Fairmont Dallas hotel

IAA 2014-15 fellows
Wednesday, April 16, 2014

Regents Professor of Studio Arts Harlan Butt and Department of English Lecturer David Taylor will be granted a semester off from teaching duties to work on their projects full time.